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The author presents a calculation of fields in laminated structures and a computation of integral parameters 

by a method suggested in the present work and used for mixtures with spherical particles. Based on Lorenz' 

determination of mean quantities, a new model of a disperse system (DS) is suggested. Using the theorem 

of a vector field, the fields and mean values of inhomogeneous systems are calculated from the condition 

of equality between the energies of the electric fields of the real medium and its model. The method is more 

general and permits one to obtain new formulas for calculating mean parameters of DS. 

The study of potential fields inhomogeneous structures has long attracted the attention of scientists. The 

appearance of a multitude of theories, methods, and models for calculating the dielectric permeability e (in the 

general case, the generalized conductivity) of mixtures was motivated by the difficulty of calculating fields in 

heterogeneous media. Investigators attempted, and are now trying, to overcome these difficulties by using various 

methods that lead to different determinations [1-22 ]. 

In the Maxwell-Lorenz theory, the dielectric permeability (DP) of a disperse system is determined from 

the condition of equality between the mean polarizations of a homogeneous medium and inclusions; using various 

models, a familiar formula was derived for calculating e [1, 2 ]. In Wagner's theory the same result was obtained 

from the condition of equality between the potentials of an equally large homogeneous medium and inclusions [5 ]. 

Other investigators also arrived at similar results by different methods [4, 11, 12 ]. In [9 ] a new result was obtained 

by simplifying Lorenz's model. 

The Rayleigh theory was based on Maxwell's idea about the possibility of representing the solutions of 

Laplace equations in and outside inclusions in the form of potentials of multifields [3 ]; the theory of multifields 

was also used in [10]. 

In the theory of calculating the DP for an inhomogeneous medium Wiener was the first to determine e from 
the ratio of the mean values of the electric displacement D and the electric field strength E [4 ]. Bruggeman proposed 

a new technique to determine e on the basis of the integral method of calculating the dielectric permeability of a 

disperse system [8 ]. Disperse systems with differently shaped inclusions were considered in [6, 7 ]. A survey and 

comparison of different theories, models, and methods of calculation of fields and computation of integral 

parameters of DS are presented in greater detail in [12, 14-16 ]. 

Analysis of the proposed theories and formulas derived for calculating e shows that they can be divided 

into two basic groups. The theories and formulas of one group are based on certain model representations of disperse 

systems, while in the theories and formulas of the second type a correction is sought for the mean value of integral 
parameters of mixtures. 

The determination of the dielectric permeability according to Wiener or Lorenz means that a real disperse 

system is replaced by an equivalent homogeneous medium with the unknown value of e. From the energy point of 

view this means that the mixture and the homogeneous medium should posssess the same value of energy of electric 

(or other) fields of these systems. But the energy, including electrical, represents a more general notion than any 

other quantity characterizing one or another medium [23 ]. Proceeding from the above, in [17-21 ] a method was 

suggested in which the dielectric permeability of a disperse system was determined from the condition of equality 
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between the energies of a disperse system and a homogeneous medium. This determination is more general and is 

applicable for any models of disperse systems and any shape of the inclusions of the disperse phase. In the present 

paper a calculation of the fields in laminated structures and a computation of mean parameters by the method used 

in [17-22] are performed. 

1. Laminated Two-Component Structures. A simple model of two-component media is the concept of 

parallel consecutive incorporation of its components. In the case of a model of a two-component medium with 

consecutive incorporation of its components, the interface between two components is normal to the vector of the 

external field of strength Eo [12 ]. For a model with parallel incorporation of its components, the interface between 

two components is parallel to the direction of the external field. 

To calculate the field and compute the integral value of the dielectric permeability of a DS, disperse systems 

with spherical inclusions were considered in [21 ]. Using the definition of the mean value of the DP of a mixture 

according to the expression 

1 f emi c dV, em = enlix = V--O0 V0 
(t) 

we can represent a real disperse system by an equivalent model in which the space of a DS of volume 110 is replaced 

by a homogeneous medium with DP emi x. For the real medium and its model to be equivalent, it is sufficient that 

outside the volume V0, within which averaging of (1) is performed, the potentials of the field at the same points 

be equal in both systems. Then, from the condition of equality between the energy of the averaged homogeneous 

body Wmi x of volume V0 with DP eratx and the energy of the real medium, occupying the volume V0, with nk foreign 

particles Wp [21 ], we obtain 

1 
W~ix = -~ (~  - ~mtx) 

1 nk 
f EOEmix ~ dV = ~ (~ - q) E f EOE~dV = Wp, 
V 0 k=l Vki 

(2) 

where e e is the DP of the disperse medium, ei is the DP of the i-th particle of the disperse phase; E 0 is the strength 

of the external homogeneous electrostatic field; Ernix i is the strength within the equivalent homogeneous body; Eki 
is the strength within the k-th foreign particle; V~i is the volume of the k-th particle. 

Taking into account Eq. (2), we introduce the first layer of volume V1 (the model with consecutive 

incorporation of layers) and DP et into a dispersion medium with DP el, in which a homogeneous field of strength 

E 0 is established. According to Eq. (2), the energy of this layer Wpl in the field E 0 is equal to zero. And for the 

energy of the second layer with DP e2 and volume V2 we have 

1 
Wp 2 = 7 (q - ~2) E0 f E~i dr .  (3) 

v2 

An expression similar to Eq. (3) can be obtained if the model with consecutive incorporation of layers is introduced 

simultaneously into the dispersion medium. 
We will introduce a homogeneous body of volume V-- V1 + 1"2 and DP e12 - emix into the dispersion medium 

(the model is presented by a homogeneous medium). For the energy W12 - Wmix of this homogeneous body placed 

in the field E 0 we obtain 

I (4) 
Wmi x = -~ (el - e12 ) Eo f EidV. 

V 

According to [21 ], the energies (3) and (4) are equal: 

1 
l ( e  -- e2) E0 f E2idV= ~ ( e l  -- e12 ) E 0  f EidV. 

v 2 v 

(5) 
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Upon introduction of the second layer into the dispersion medium we write the following condition on the interface: 

e2E2 i = elEO " (6) 

And upon introduction of a homogeneous body into the dispersion medium we have on the interface that 

e E i  = elE 0 . (6a) 

Consequently, 

e (6b) 
E2i = ~'2 Ei" 

Substituting (6b) into Eq. (5), for el2 = emi x we obtain the well-known Maxwell formula 

ele2 (7) 
emi x = e2 + f 2 ( e l  - e2) '  

where f 2  = V 2 / V .  

In deriving Eq. (7) it was taken into account that 

Eld  1 + E2d 2 = Eod , (7a) 

where dl,  d2, d are the thicknesses of the first and second layer and the homogeneous body, respectively. 

We must infer that  the derivation of Eq. (7) should not depend on the dielectric permeability of teh 

dispersion medium into which the layers of the model under  consideration and the homogeneous body are 

introduced. We can demonstrate this by assuming the dielectric permeability of the dispersion medium to be equal 

to the arbitrary value e x .  Then, in accordance with Eq. (2), the equality of energies (5) will take the form 

E 0 (e  x - el) V1Eli + E 0 ( e x  - e2) V2Ezi = (e  x - emix) V E o E  i �9 ( 8 )  

Taking into account the boundary conditions for the laminated structure 

elEli = e2E2i = e x E  0 (9) 

and for the model 

emixE i = exE0, (10) 

and also the fact that f l  -- V1 / V = 1 - f2, we again obtain Eq. (7) from Eq. (8). This was to be expected because, 

if we assume that e 1 = 1 (or e x = 1), the equalities of the energies of the dielectric bodies (3) and (4), and 

consequently also (5) or (8), transform to equalities of the polarization energies of these bodies. And, as is known, 

the polarization energy of a dielectric substance depends on the properties (DP) of the substance and the external 

field applied. It should also be emphasized that the expression for the energy of a dielectric body (2) (Wmix and 

Wp) placed in an external electrostatic field was derived from the difference between the energies of the fields of 

the disperse system and the dispersion medium. 

For the model with parallel layers Eq. (5) assumes the form 

(~:1 -- t~2) !/2 = (el -- emix) V, (11) 

since Eli = E2i = E i = E 0 in this case. For the case considered this equation gives the well-known formula 

= + Yz - (12) 
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2. Disperse Systems with Laminated Spherical Inclusions. First, we consider the case of a single two-layer 
spherical particle placed in an external uniform electrostatic field of strength E0. Suppose the internal layer of 

radius rl with dielecytic permeability el is covered by a layer with DP e2. The external radius of the particle is 

equal to r 2. It is necessary to calculate the equivalent DP of the particle el2 = emi x. First, we introduce a laminated 

spherical particle into a dispersion medium with DP e2 = 1, in which the field E 0 is established. The polarization 

energy of this particle in the field E0 is equal to the sum of the polarization energies of the internal Wpl and external 

Wp2 layers. And since, according to Eq. (2) or (3), Wp2 is equal to zero, then 

1 (1 -El)~0g0 f ElidV. (13) Wpl 2 = Wpl =-~ 
V1 

Into such a dispersion medium, we introduce a homogeneous sphere of radius r2 and DP e12. The polarization 

energy of this body placed in the field E 0 will be equal to 

1 (1 f dV. (14) Wpl 2 = "~ - el2 ) eoEo E12i 
V12 

The equality of (13) and (14) 

_ 1 (1 - e12 ) e0E 0 f dV 1 (1 - el) toE 0 f ElidV = -~ El2 i 2 
V1 V12 

(15) 

permits one to calculate el2. As shown above, equality (15) is independent of the dielectric permeability of the 

dispersion medium. 
The calculation of Eli and E2i presents no difficulty (the procedure is well known and is cited in every 

textbook on theoretical electrical engineering). 

Expressing Wpl (15) in terms of the dipole moment Pl of a particle of radius rl 

1 fl  Pl (16) Wp I = 21 (1 - el) e0E 0 vlf ElidV = - -~ E 0 ~ dV 

and taking into account that inside the particle the field strength is equal to the sum of the field E 0 and the 

polarization field Ep 

PI Pl (17) 
Eli = E 0 + Ep -- E 0 3e ~ = E o 3e0V 1 , 

by solving Eqs. (16) and (17) simultaneously we obtain for Eli at e2 ;~ 1 

3e 2 
Eli - el + 2e 2 EO" 

(18) 

Following the same lines we can calculate the field inside a homogeneous sphere with DP e12 (at e 2 r 1): 

3c2 09) 
El2 i - el 2 + 2e 2 Eo" 

Substituting Eqs. (18) and (19) into Eq. (15), for the equivalent permeability we obtain a formula derived by 

Netushil: 
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e I (r23 + 2r~) + 2e 2 (r23 - r~) (20) 
el2 = e 2 

e 2(2r~+r?) +e l ( r  3 - r ? )  " 

We note that Eq. (20) is Maxwell's formula in a different formulation 

el2 = e 2 
e I + 2e 2 + 2 f  1 (el --e2) 

el + 2e2 - f l  (el - e2) ' 
(21) 

where fl V1/V12 2 3 = = r l / r2  = (1 - h/r2)3; h is the thickness of the external layer. 
Let us consider a new problem: in a dispersion medium the indicated laminated spherical particles are 

located regularly at the nodes of a simple cubic lattice. First, we consider the case where the volumetric fraction is 

insignificant and the interaction of particles is neglected. 

We begin the calculation of the field and the computation of the DP of the mixture emi x with the replacement 

of the laminated particles by equivalent particles with DP e12 of (20). Applying the Lorenz averaging (1) to such 

a medium in the spherical volume Vo (of radius RO), we represent the disperse system by a homogeneous sphere 

of volume Vo with the unknown DP emix [21 ]. Then, in this case relation (5) will take the form 

n 

1 ( 1  - e12 ) e0E o ~ f El2 i d V  = (I - emix) e0E 0 f Emi x i d V ,  (22) 2 
i=I VI2 V 0 

where n is the number of particles contained in the spherical volume Vo of radius Ro; El2 i is the strength inside a 

homogeneous particle of radius r2 and DP e12; Emix i is the strength inside the equivalent homogeneous sphere of 

radius R 0 and DP emi x. 

At low volumetric concentrations of the inclusions f12 = nV12/Vo = nV2/Vo the particles are polarized by 

the external field EO, and in Eq. (22) E12 i is determined from Eq. (19) with the replacement of e2 by e2 = 1. Then, 
taking account of the symmetry we have from Eq. (22) that 

emm -- 1 el2 -- 1 
em~ "+ 2 - fl 2 T 2 ' e12 

(23) 

where el2 is determined from Eq. (20). We note that relation (23) is known as the Maxwell-Wagner formula for 
disperse systems with laminated spherical inclusions. 

But if the volumetric fraction of the laminated particles f12 is such that it is necessary to take into account 

dipole interactions, the particles will be polarized by the Lorenz field. In this case 

E12 i = E L + Ep = E o + - -  
P12 P12 _ Eo + nPl_____L Pl2 (24) 
3e 0 3eoV12 3e0V 0 3eoV12" 

In Eq. (24) the averaging of the dipole moments P12 of the particles is performed in the volume Vo. 

Expressing the energy spent for polarization of the particles (14) in terms of the dipole moment P12 and 
solving the thus obtained equation simultaneously with Eq. (24), we obtain by analogy with Eqs. (16) and (17) 
that 

3E~ (25) 
E12i = e12 + 2 - f n  ( q 2  - 1) ' 

where f12 = nVl 2/Vo. 

Now, substituting Eq. (25) into Eq. (22), with allowance for dipole interactions of the particles, we obtain 
a new formula for the dielectric permeability of the mixture: 
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em~ - 1 e l 2  - -  1 
em~ + 2 - f12 el 2 + 2 _ / 1 2 ( e l 2 _  1)" 

(26) 

We must infer that the accuracy of this formula should be higher than that of Eq. (23), since in contrast to the 

latter, it takes into account the dipole interaction. 

To calculate el2 taking account of the dipole interaction we substitute the value of the Lorenz field in Eq. 

(17) instead of E0 (in Eqs. (16) and (24) P12 is replaced by P2) and solve it simultaneously with Eq. (16). For 
El i  we obtain (at e ~ 1) 

3e2Eo (27) 
E l / =  el + 2e2 - f12 (el - e2) " 

Then from Eq. (15), taking into account Eqs. (25) and (27), we obtain 

el2 -- e2 el -- e2 (28) 

el2 + 2e2 -- f12 ( e12- -e2 )  = f l  el + 2e 2 - - f12  (el - - e 2 ) "  

If we neglect the dipole interaction, then we obtain formula (20) from Eq. (28). 
We may claim that the accuracy of the new formulas (26) and (28), which take into account the dipole 

interaction, is higher than the accuracy of the well known formulas (20) and (23). This is confirmed by the fact 

that our formula (26) for ordinary spherical inclusions correlates better with experiment than the Maxwell-Lorenz 

formula (23) [21, 22]. 

It should be noted that the method suggested in [21 ] permits one to calculate the field and compute integral 

parameters of a disperse system with laminated spherical particles with allowance for the interaction of higher-order 

multifields. 
3. Disperse Systems with Laminated Cylindrical Inclusions. Suppose there is a rather long cylinder of 

radius r 1 with DP el covered by a layer of another material of thickness h with DP e 2. The radius of the external 

cylinder is rz = rl + h. The axis of the cylinder is perpendicular to the direction of an external electrostatic field 
with the strength Eo. Performing calculations similar to those for a laminated sphere and taking into account the 

fact that the depolarization factor along the X axis is Nx = 1/2, we obtain for the strength El i  x inside the layer 
with DP e 1 and the strength El2ix inside the homogeneous cylinder with DP e12 instead of Eqs. (18) and (19) 

(e 2 ~ 1) 

2e2 (29) 
- -  E0x , Eli  x - el + e 2 

2e2 (30) 
- - E o x .  E 1 2 i x -  et 2 +  e 2 

Substituting Eqs. (23) and (30) into Eq. (15) (at e 2 ;~ 1), for the dielectric permeability of the laminated cylinder 

we obtain 

el2 -- e2 el - e2 (31) 
el 2 + e~ 2 - - f l  el + e---~' 

whence 

el2 = e 2 
+ rb + rb (32) 
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2 2 
where f l  = rl/r2.  

Let us calculate the field within laminated cylindrical particles whose axes coincide with the nodes of a 

spatial cubic lattice and are perpendicular to the direction of the external field. First, we consider the case where 
the volumetric fraction of the particles is very small and the mutual effect of the particles can be neglected. 

Since the shape of the volume V0, in which the averaging is performed, must be similar to the shape of the 

inclusions, this volume has the shape of a cylinder. In the case considered the particles are polarized by the external 

field, and Elix and E 2 i x  a r e  determined from Eqs. (29) and (30). And the strength Emi x ix inside a homogeneous 

cylinder with DP emix and volume V0 is determined from Eq. (29) and is equal to (at e = 1) 

2Eox (33) 
Emix ix - emix  + 1 " 

From the energy balance (22), taking account of Eqs. (30) and (33), we have for the dielectric permeability of the 

mixture at e 2 ~ 1 

612 + e2 + f12 (e l2  -- 62) 
6mi x = e 2 

612 + 62 -- f12 (e12 -- 62) 
(34) 

where f12 = t z V 2 1 V o  �9 

In Eq. (34) e12 is determined from Eq. (32). Formula (34) is similar to Rayleigh's formula for cylindrical 

inclusions [7 ]. If the volumetric fraction of the foreign bodies fl 2 is such that it is necessary to take into account 

the dipole interaction, then for the strength inside homogeneous cylinders with DP e12 we have 

E12ix = ELx + Epx = E0x + - -  
nP12x Pl2x  

2eoV 0 280V12 " 
(35) 

Performing analogous calculations for spherical particles, instead of Eq. (25) we can write 

2E0x (36) 
E12ix = e12 + 1 - f12 (612 - 1) " 

Substituting Eqs. (33) and (36) into Eq. (22) at 62 ;~ I, we obtain a new formula: 

612 + e 2 
emi x = e 2 812 + 62 - 2f12 (612 - 82) 

(37) 

Naturally, in calculating 612 it is also necessary to take into account the interaction of the particles. Similar 

calculations for Eli x yield 

2Eox (38) 
Elix = e 1 + 1 - f 1 2  (61 - 1)" 

Substituting Eqs. (36) and (38) into Eq. (15), for 612 at 62 ~ 1 we obtain the formula 

6x + 62 - f12 (el - 62) + f l  (61 - 82) (1 + f12) 

e12 = 62 61 + 62 - f12 (81 - 82) - f l  (61 - 82) (1 + f12)" 
(39) 

4. Foreign Laminated Particles of Ellipsoidal Shape. Let an internal ellipsoid consist of a material with 

dielectric permeability el and an external layer consist of a material with permeability 62. The ellipsoidal surfaces 

of the layers are confocal. Let us assume that an external field is directed along the X axis, so that EO = E0x, and 

the depolarization factor is Nx. To calculate the field within such a particle and compute the equivalent dielectric 

permeability e12 , first, as in Secs. 2 and 3, we introduce an ellipsoid of volume V1 with the permeability of the 
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material el into a dispersion medium with DP e 2. The strength of the field inside the ellipsoid along the X axis is 

equal to 

NxP2x 
Eli x = E0x + Epx = E0x eoV 1 

(40) 

Performing calculations similar to those for spheres and cylinders, for the strength of the internal ellipsoid we 

obtain 

E0x (41) 
E l i x  = 1 + (e I - 1) N x " 

We now introduce a homogeneous ellipsoid of volume V2 with DP e12 into the same dispersion medium. For the 

strength inside this body we have 

E0x (42) 
E12x = 1 + (el2 - 1) N x " 

Substituting Eqs. (41) and (42) into Eq. (15) at e2 ~ 1, we obtain the formula 

e2 + (el -- e2) (,/el + (1 -- f l )  Nx) 
e l 2  = e2 e 2 + (e 1 - e2) (1 - f l )  Nx ' 

(43) 

which is similar to Fricke's formula [7, 14] for a disperse system with ordinary ellipsoids. Now let laminated 

identically oriented ellipsoids be located at the nodes of a spatial cubic lattice. At very low volumetric concentrations 

of the foreign bodies, the interaction can be neglected. Then, for the strength Emix ix within a homogeneous ellipsoid 

with DP emi x and volume V o we obtain 

E0x (44) 
Emix ix = 1 + (emi x - 1 ) N  x " 

For the DP of a disperse system along the X axis (at e2 ;~ 1) Eqs. (22), (42), and (44) permit one to obtain a new 

formula: 

e2 + (elz - c2) (f lz  + (1 - f l2)  Nx) 
emix = eI2 e 2 + (e12 -- e2) (1 -- f12) Nx ' 

(45) 

where fz = vzlVo, and e12 is determined from Eq. (43). 
Let us now go over to the calculation of the field and the computation of emix with allowance for dipole 

interaction. For this, first we introduce n homogeneous identically oriented (along the X axis) ellipsoids with DP 

el2 into a dispersion medium. The polarization energy of these particles (at e2 = 1) is equal to 

1 n (46) 
Wpl 2 = "~ (l - E12 ) C O Z f E0x E12ix d V .  

i=1 V12 

In the present case these particles are polarized by the field 

E12ix = ELx + Epx = E0x + 
nNxPl2x NxPl2x 

eoV 0 eoVl2 �9 
(47) 

Expressing Eq. (46) in terms of P12x and solving it simultaneously with Eq. (47), we obtain for E12ix the following 

relation: 
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E12ix = 1 - ( e l2  - 1) (f12 --  1) N x" 
(48) 

Similarly, we find the strength of the field in the internal ellipsoids (with DP e l) 

E0x (49) 
Elix= 1 - ( e  l -  1 ) ( f l -  1) N x" 

Substituting Eqs. (48) and (49) into Eq. (15), for ei2 at e 2 ~ 1 we obtain 

E:2 + (e l  - e2) ( f l  + Nx (1 + 2 f l )  ) 

e12 = e2 e 2 + (e 1 - e 2 ) ( 1  - 2 f 1 2 )  N x ' 
(50) 

where fl  = V1 / VI 2. 
Introducing into the dispersion medium a homogeneous ellipsoid with DP emix of volume Vo, in which the 

averaging of P12 of (47) is performed we obtain the following relation for the polarization energy 

Wpmi x = 21 (1 - emix) e 0 f E0x Emi x ix d V  
v0 

(51) 

Equating (46) and (51) and taking into account Eqs. (48) and (49), for the dielectric permeability of the mixture 

(at e2 ~ 1) we have a new formula that is more accurate than formula (50): 

em~  = e l 2  
e 2 + (e 2 -- e12) 0e12 - N x ( 1  + 2 f 1 2 ) )  

e 2 + (e 2 --  e12 ) (1 -2f12) N x 
(52) 

We also obtain for el2 a formula similar to formula (52) 

e l 2  = e 2 
e 2 + (e 2 - e l )  Oel - Nx) (1 + 2 f l )  

e 2 + (e 2 --  e l )  (1 - 2fl) N x 
(53) 

In conclusion, we must note that the proposed method for calculating the field and computing integral 
parameters of a mixture with two-layer inclusions permits one to take into account more accurately the influence 

of a double layer on dielectric dispersion and also to calculate the density of bound charges on the surface of foreign 
particles. 
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